

The Odan/Detech Group Inc. P: (905) 632-3811 F: (905) 632-3363 5230, SOUTH SERVICE ROAD, UNIT 107 BURLINGTON, ONTARIO, L7L 5K2 www.odandetech.com

PROPOSED CHURCH CONVERSION 260 HIGH PARK AVENUE CITY OF TORONTO

FUNCTIONAL SERVICING REPORT

Prepared For:

TRAC DEVELOPMENTS INC. c/o MCG CONSULTANTS INC.

February 10, 2016

TABLE OF CONTENTS

DESCRIPTION

1

1.0	INTRODUCTION	2
2.0	DESIGN CONSIDERATIONS	3
	A) Sanitary Waste Water Disposal	3
	B) Water Distribution	5
	C) Stormwater Management	7
	Allowable Flow	7
	Post Development Flow Analysis	8
	Water Balance	10
	Water Quality	11
3.0	CONCLUSIONS	12

APPENDIX A

Existing Condition Survey Architectural Site Plan Summary of Building Statistics

APPENDIX B

Sanitary Flow Calculations Sanitary Sewer Design Sheet Sanitary Tributary Plan Existing Plan & Profiles

APPENDIX C

FUS Calculation Sheet Fire Hydrant Pressure/Flow Test Results (not included)

APPENDIX D

Visual Otthymo Model Visual Otthymo Input & Output Water Balance Calculations

Note: This report should be read in conjunction with the Functional Servicing & Grading Plans prepared by The Odan/Detech Group Inc

1.0 INTRODUCTION

The property under study is a 0.487 ha site located on at 260 High Park Avenue, at the southwest corner of the intersection of High Park Avenue and Annette Street. Currently the site contains an existing church and a single family residential home. Site is also bound by existing residential home to the south and to the west.

It is proposed to construct a new low rise residential apartment complete with an underground parking structure. For further information regarding the proposed building/expansion layouts and location please refer to drawings prepared by the architect.

This report will evaluate the serviceability of the site with respect to sanitary, water and storm services and also evaluate the stormwater management (SWM) strategy that will be implemented to meet the City of Toronto's SWM requirements and Wet Weather Flow Management Guidelines (WWFMG).

For detailed topography of the existing site conditions, as of October 7, 2015 refer to the topographic survey prepared by R. Avis Surveying Inc.

PROJECT No. 15263

File No. 15263 - Functional Servicing Report

2.0 DESIGN CONSIDERATIONS

A) SANITARY WASTE WATER DISPOSAL

Existing Conditions

There is an existing sanitary sewer located on High Park Avenue. The sanitary sewer between Annette Street and Dundas Street West is a 750mm brick sewer which increases to an 825mm brick sanitary sewer between Annette Street and Humberside Avenue where it then connects to the sanitary trunk sewer.

The existing sanitary sewer is oversized for its current tributary area due to its conversation from a combined sewer to a sanitary only sewer. Plan H-235 shows that in 1973 a new storm sewer was constructed on High Park Avenue and bulkheads were constructed to divert flow from the old sewer to the new storm sewer. Furthermore, this plan makes reference to "for sanitary connections only" on the plan. An additional bulkhead was constructed at the intersection of High Park Avenue and Annette Street to separate flows. This can also be seen on the on the BMOG plan 24-B-51. Based on the above evidence we conclude that the sanitary sewer on High Park Avenue is not a combined sewer but a sanitary sewer serving as a local sewer for the homes on this street. Similarly, the sanitary sewer on High Park Avenue between Annette Street and Humberside Avenue also specifies "sanitary connections only". These existing plan and profiles can be found in the appendix for further reference.

There is an existing combined sewer on Annette Street that does not connect with the High Park sewer but continues westerly to the trunk sewer at the intersection of Annette Street and Quebec Avenue. It is not known if this sewer has been converted to a sanitary sewer.

All existing services for the site will be removed by City forces through the Municipal Services Application.

Proposed Conditions

It is proposed to connect the new development to the existing 825mm brick sewer on High Park Avenue with a 150mm service lateral.

The following Table 1 summarizes the uses and corresponding areas/units that will be proposed for the sanitary outlet for the site. These will be used to evaluate the expected population increase and peak sanitary flows for the site for each outlet.

TABLE 1 - Summary of Land Uses for Sanitary Flow Calculations					
Existing Proposed					
Land Use	Site Area (ha)	Population	No. of Units	Population	
Church	0.425	37	-	-	
Residential	0.062	4	77	143	

For calculating the population increases for the site the following city standards for population densities and flow rates were used.

- 1.4 persons/unit for 1 Bedroom Units
- 2.1 persons/unit for 2 Bedroom Units
- 3.1 persons/unit for 3 Bedroom Units
- 3.5 persons/unit for single family dwelling
- 86 persons/ha for churches / schools
- The per capita flow rate of 240 L/person/day for existing residential will be used.
- The per capita flow rate of 450 L/person/day for proposed residential will be used.

Given the above information, the peak sanitary flows to High Park Avenue were calculated as shown in the following Table 2 as per City of Toronto Sanitary Design Guidelines.

TABLE 2 - Summary of Sanitary Flows from the Site			
Location of Outlet	Existing Peak Flow (I/s)	Proposed Peak Flow (I/s)	
High Park Avenue	0.61	3.25	

The tributary area for the High Park Avenue was analyzed to the trunk sewer on Humberside Avenue. The tributary area consists of existing single family homes on High Park Avenue from Dundas Street West to Humberside Avenue. Sewers south of Humberside Avenue continue to the south. The calculations show that the existing sanitary sewer has enough capacity to convey the extra sanitary flow from the proposed site to the trunk sewer.

TABLE 3 - Summary of Total Sanitary Flows versus Capacity				
Scenario	Location of Outlet	Peak Flow (l/s)	High Park Sewer Capacity (l/s)	
Existing	Humberside Ave Trunk Sewer	4.91	908	
Proposed	Humberside Ave Trunk Sewer	7.55	908	

* includes infiltration

B) WATER DISTRIBUTION

Existing Conditions

There is an existing 300mm watermain located on Annette Street, a 250mm watermain on High Park Avenue north of Annette Street and a 150mm watermain in High Park Avenue south of Annette Street. All of these watermain tie together with two separate "T" connections on Annette Street.

Fire Hydrants are located on the west side of High Park Avenue with one located right at the intersection of High Park Avenue and Annette Street.

All existing services for the site will be removed by City forces through the Municipal Services Application

Proposed Conditions

It is proposed to connect to the 300mm watermain located on Annette Street with a 200mm PVC service lateral since the proposed development is expected to have sprinklers. The lateral will then branch of to a 50mm service for domestic purposes. The proposed lateral will enter the building within a mechanical room which will be housed with all the necessary meters and backflow preventers for the relevant fire line and domestic lines.

The site will not require any additional hydrants for the site so the proposed siamese connection for the building will need to be located within 45m of the existing hydrant at the intersection as mentioned in the above paragraph.

The unit rate and peaking factors of water consumption, minimum pipe size and allowable pressure in line were established from the City Design Manual Standards. The fire flow water demand is calculated as per FUS 1999 manual.

The pressures and volumes must be sufficient for peak hour conditions and under fire conditions as established by the Ontario Building Code 2006. The minimal residual pressure under fire conditions is 140 kpa. (or 20.3 psi).

a)	Average Day domestic demand -	using 191L/cap/day (143 persons, from sanitary calculations	0.32 L/sec s)
b)	Peak day demand -	1.3 x daily demand	0.42 L/sec
c)	Peak hour demand -	2.5 x daily demand	0.80 L/sec
d)	Fire flow (Ordinary Construction)		183 L/sec
e)	Fire flow (Fire Resistive)		100 L/sec

TABLE 4 – Total Water Demand for the Site					
	USGM				
Peak Day Demand	0.42	7			
Fire Flow Demand (ordinary Construction)	183.00	2,900			
Total Water Demand	183.42	2.907			
Actual Flow at 20 PSI Residual Pressure	TBD	TBD			

The City of Toronto does not permitted hydrant testing in the winter months, therefore, a hydrant test will be completed in the spring to accompany this report. Due to the size of the adjacent watermains and their interconnected nature we feel, based on experience, that the fire flow demands for this site should be accomplished.

File No. 15263 - Functional Servicing Report

C) STORM WATER MANAGEMENT

Existing Conditions

There is a 1650mm concrete storm sewer located on Annette Street which flows easterly to High Park Avenue. The storm sewer then bends and flows southerly on High Park Avenue towards Humberside Drive. At the bend there is a connection to collect flows from the north and east.

All existing services for the site will be removed by City forces through the Municipal Services Application

Proposed Conditions

Storm water management for the proposed development will follow the storm water criteria as set out by the City of Toronto's Wet Weather Flow Management Guidelines for quantity control. The allowable post-development peak flow for the proposed development up to the 100 year storm event will be set to the 2-year pre-development flow rate using a rational runoff coefficient (C) of 0.5. Only the areas of redevelopment where the existing elevations are being altered will be considered for stormwater management. For this development, this includes areas where there is a new building footprint and where additional floors are being proposed above the existing roof top. A new storm outlet will be required onto Annette Street at the same capacity as the allowable from the site.

Design storm data for the City of Toronto 2 year and 100 year storms are shown below. Using Visual Otthymo 2.3.2 to perform stormwater runoff analysis, these storms will be used to show that the storm drainage and total storage volume up to the 100 year event will be accommodated on-site.

2 Year Storm:	$I_2 = 21.8 / (T)^{(0.780)}$	where: I = intensity (mm/hr)
100 Year Storm:	$I_{100} = 57.7 / (T)^{(0.800)}$	T= time of concentration (hours)

The above equations were modified to represent T in minutes as follows so they could be inputted in the computer modelling program Visual Otthymo.

$I_2 = ((21.8) \times (1/60)^{(-0.780)})/(T)^{(0.780)}$	$I_{100} = ((59.7) \times (1/60)^{(-0.800)})/(T)^{(0.800)}$
$I_2 = 531.9 / (T)^{(0.780)}$	$I_{100} = 1579.4 / (T)^{(0.800)}$

Allowable Flow:

Allowable discharge from the site will be determined by calculating the pre-development flow for the 2 year design storms using the rational method. The existing C value for the site is 0.90 however the WWFM guidelines states a C value no greater than 0.5 shall be used for redevelopment. The following table summarizes the allowable release rate for the site.

TABLE 5 – Allowable Flows					
Location	Run-off Coefficient	Rainfall Intensity (mm/hr)	Area of Development (ha)	Site Allowable (I/s)	
Annette Street	0.50	88.2	0.487	60	

Post Development Flow Analysis:

In order to control the post development flows to the allowable flow rate, on-site storage will be required. Visual OTTHYMO 2.3.2. will be used to model and determine the detention volume required. For drainage areas with significant imperviousness the calculation of effective rainfall in Visual OTTHYMO is accomplished using the "Standhyd" method. This method is used in urban watersheds to simulate runoff by combining two parallel standard unit hydrographs resulting from the effective rainfall intensity over the pervious and impervious surfaces. For pervious surfaces, losses are calculated using the SCS modified CN method.

The following table summarizes the parameters used in Visual OTTHYMO to characterize the post development catchment areas.

TABLE 6 - Catchment Characteristics for the Post-Developed Site								
Area	Area (ha)	Hydrograph Method	% impervious	imperviousness directly connected %	Loss Method for Pervious Area	CN for Pervious Area	Initial Abstraction for Pervious (mm)	Time to peak (T_p)
Roofs and Terraces	0.246	StandHyd	99	99	SCS	99	1	-
Landscape, Asphalt and Hard Surfaces	0.242	StandHyd	62	62	SCS	80	5	-

The following table is a summary of the total peak storm flows for the 2 and 100 year storm events. This table demonstrates that the post-development flow meets the allowable criteria.

TABLE 7 - Summary of Flows from Site					
Storm Sewer System	2 Yr. Storm (I/s)	100 Yr. Storm (l/s)			
Flow to Annette Street	28	54			

The following table is a summary of the required volume to store the 2 and 100 year storm events due to the necessary controls to achieve the allowable flow rate.

TABLE 8 - Summary of Volumes for the Site for Quantity Control					
Storm Sewer System	2 Yr. Storm (m ³)	100 Yr. Storm (m ³)			
Volume Required	55	180			

Volumes will be achieved through an underground storage chamber located within the underground parking structure. This chamber will also include the volume required for water balance. The water balance volume will be added to the above volume, water balance volume cannot be used as quantity control volume.

The tank will required an emergency overflow either to the surface or through pumps connected to a generator. The tanks will also required a vent to allow the tank to fill and drain properly.

Water Balance:

WQ1.1 - Erosion & Sediment Control

An erosion and sediment control plan has been prepared by The Odan/Detech Group for this site.

WQ 2.2 - Stormwater Retention & Reuse

The primary objective of the Water Balance Targets/Criteria is to capture and manage annual rainfall on the development site itself to preserve the pre-development hydrology (or "water balance", which typically consists of three components: runoff, infiltration, and evapotranspiration) through a combination of infiltration, evapotranspiration, landscaping, rainwater reuse and/or other low impact development practices.

WQ 2.2 Stormwater retention & reuse

Ensure that the maximum allowable annual runoff volume from the development site is no more than 50% of the total average annual rainfall depth

The water balance target volume is calculated based on the City of Toronto's Wet Weather Flow Management Guidelines for annual rainfall capture.

TABLE 7 - Water Ba	alance Objective
--------------------	------------------

Location I.D.	Site Area (m)	Total Annual Volume Required (m ³)
Site	4870	2045

The above criteria can be achieved via absorption/infiltration through the various surfaces along with stored storm water in a storage tanks for re-use purposes. Re-use water will consist of storm run-off from roof tops.

The site will require a 24m³ storage volume tank for re-use. This tank is generally combined with the quantity control tank with a baffle to separate the clean roof top water and the unclean surface run-off. A pump system will be designed by the mechanical engineer for the re-use tank.

Water Quality:

WQ 3.1 - Total Suspended Solids (TSS)

WQ 3.1 - Total Suspended Solids (TSS)

Remove 80% of total suspended solids (TSS) on an annual loading basis from all runoff leaving the site based on the post-development level of imperviousness

The site was divided according to surface conditions and the effective TSS for each surface condition was considered based on a number of criteria (i.e. drainage area surface characteristics, IA values, where the flows are directed, etc). The general basis of the effective TSS removal rates are as follows:

A city approved OGS (Jellyfish, MFS Filter) unit will be sized to treat the run-off for the surface areas, ie. parking, loading, etc... generally anywhere vehicles could drive.

The majority of this site is roof top which is considered clean water and will not require any further treatment.

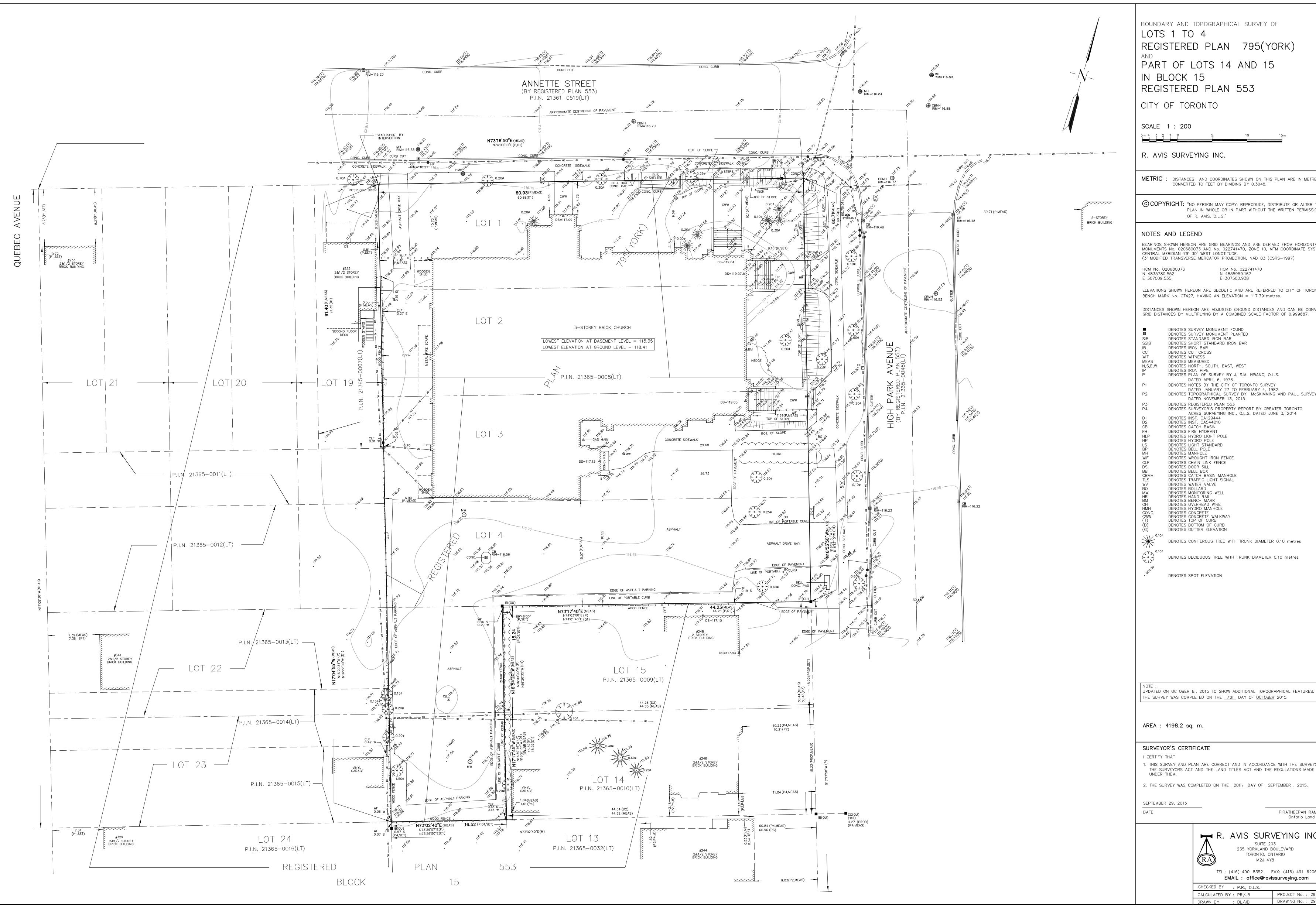
3.0 CONCLUSIONS

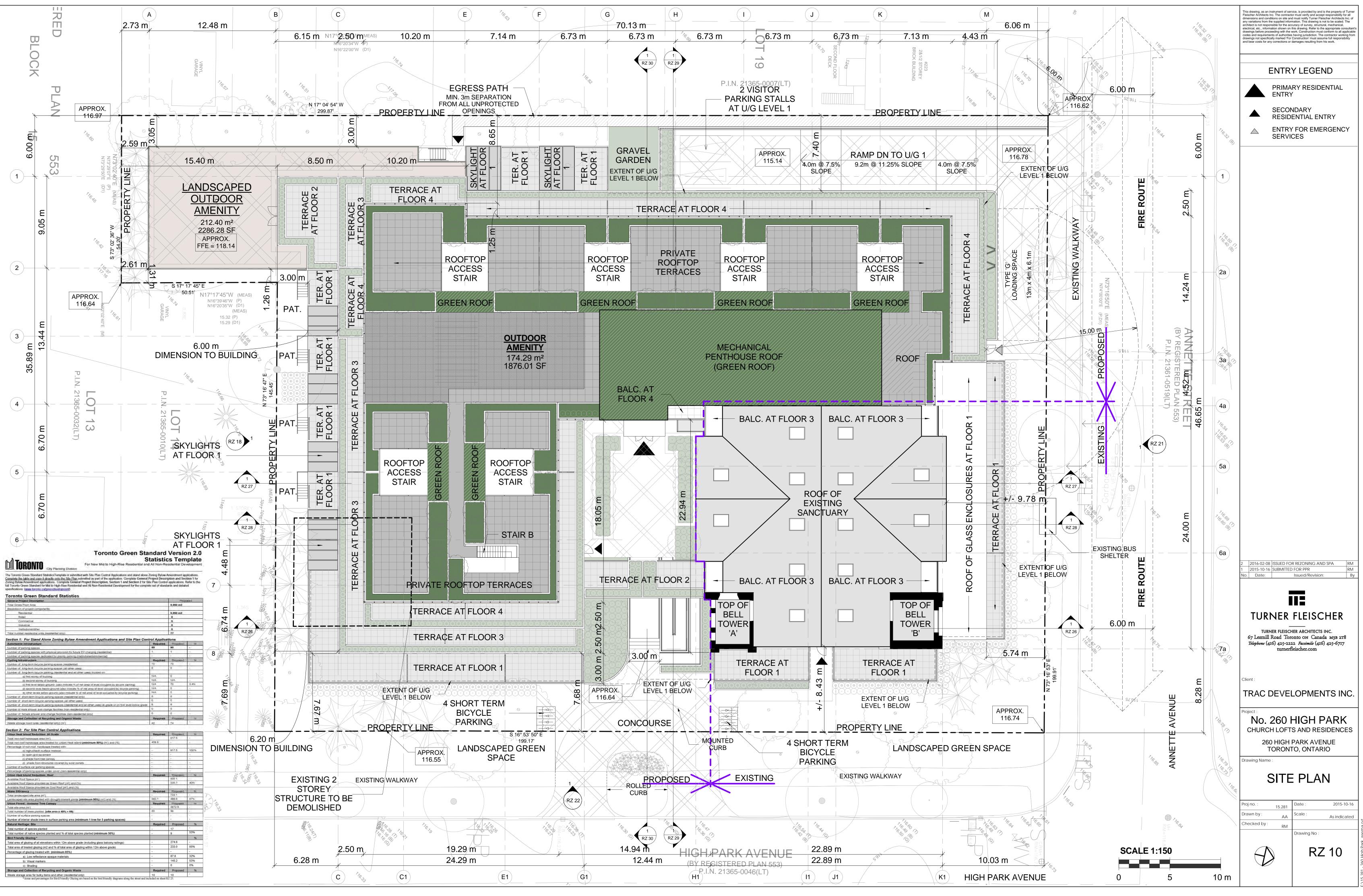
From our investigation the site is serviceable utilizing existing sanitary, storm and watermain infrastructure within and adjacent to the site. Storm water management can be accommodated with on-site storage as described in this report.

The following table summarizes the SWM components of the proposed development.

TABLE 9 - Summary Information	
Existing Sanitary Flow (I/s)	0.61
Proposed Sanitary Flow (I/s)	3.25
Allowable release rate from site (I/s) (2 year storm)	60
Actual release rate from site (I/s) (100 year storm)	54
Total Storm Water Storage Required (m ³)	180
Total Storm Water Storage Provided (m ³)	180
Water Quality	OGS

Respectfully Submitted; The Odan Detech Group Inc.


Kate Logan, B.EngScty


John Krpan, M.S.C.E., P.Eng

APPENDIX A

Existing Condition Survey Architectural Site Plan Summary of Building Statistics

RES AND CAN BE
THIS GION
TAL CONTROL SYEM
ONTO
IVERTED TO
EYING LTD., O.L.S.
_
YS ACT.
YS ACT, E
AMACHANDRAN d Surveyor
С.
06
945-0
945-0T.DWG

15.281 - 260 HIGH PARK

TORONTO, ONTARIO STATISTICS

SITE AREA	4,873	m⁴			
TOTAL GFA	9,850	m²			
F.S.I.	2.02 x SITE AREA				

GFA & FSI SUMMARY - AS PER CITY OF TORONTO ZONING BY-LAW 569-2013

USE	TFA		GFA		UNITS	F.S.I.	
	m ²	ft ²	m ²	ft ²	#	#	
RESIDENTIAL	9,701	104,423	9,701	104,423	77	1.99	
AMENITY (IN EXCESS OF MIN. REQ.)	303	3,262	149	1,604		0.03	
TOTAL	10,004	107,685	9,850	106,027	77	2.02	

GROSS FLOOR AREA (GFA) CALCULATIONS

4 STOREY RESIDENTIAL BUILDING

							GROSS F	LOOR AR	EA BREAK	(DOWN																																																																																																																																																										
-		TOTAL FLOO	OR AREA	GROSS FLO	OR AREA		RESIDE	NTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL (E		RESIDENTIAL		INDOOR A	MENITY																																																																																																																																													
	FLOOR	(NO EXCLU		(W/ EXCLU	and the second second	SALEA	BLE	NON-SAL	EABLE													RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL		RESIDENTIAL
	· · · · · · · · · · · · · · · · · · ·	m²	ft ²	m²	ft ²	m²	ft ²	m²	ft ²	m²	ft ²	m²	ft ²	#	m²	ft ²	m²	ft ²																																																																																																																																																		
Ļ	U/G 2	1,807.7	19,458	45.2	487			45	487	45	487																																																																																																																																																									
TIA	U/G 1	3,547.7	38,188	481.7	5,185	406	4,374	76	814	482	5,185																																																																																																																																																									
DREY RESIDENT BUILDING	1	2,612.7	28,123	2,273.1	24,468	1,949	20,976	324	3,492	2,273	24,468	303	3,262	21	212	2,277																																																																																																																																																				
	2	2,502.4	26,936	2,465.9	26,543	2,262	24,348	204	2,195	2,466	26,543			24																																																																																																																																																						
	3	2,331.6	25,097	2,295.1	24,704	2,095	22,548	200	2,156	2,295	24,704			20																																																																																																																																																						
Ϋ́ε	4	1,886.6	20,308	1,817.4	19,563	1,647	17,733	170	1,829	1,817	19,563			12			_																																																																																																																																																			
ORI B	MECH. PH	524.7	5,647	322.7	3,473	228	2,456	95	1,018	323	3,473				175	1,882																																																																																																																																																				
4 ST(ROOF																243	2,614																																																																																																																																																		
4	TOTAL	15,213	163,757	9,701	104,423	8,587	92,435	1,114	11,990	9,701	104,423	303	3,262	77	386	4,159	243	2,614																																																																																																																																																		

City of Toronto Zoning By-Law NO. 569-2013 Gross Floor Area (GFA) - Apartment **Building:**

Means the sum of the total area of each floor level of a building, above and below the ground, measured from the exterior of the main wall of each floor level. In the Residential Zone category, the gross floor area of an apartment building is reduced by the area in the building used for:

(A) parking, loading and bicycle parking below established grade;

(B) required loading spaces and required bicycle parking spaces at or above established grade; (C) storage rooms, washrooms, electrical, utility, mechanical and ventilation rooms in the

basement;

(D) shower and change facilities required by this By-law for required bicycle parking spaces

(E) amenity space required by this By-law;

(F) elevator shafts;

(G) garbage shafts;

(H) mechanical penthouse; and

(I) exit stairwells in the building.

REVISED 2-Feb-16

TURNER FLEISCHER								
67 Lesmill Road Tor Telephone (416) 425-222	IER ARCHITECTS INC. onto on Canada M3B 278 22 <i>Facsimile</i> (416) 425-6717 leischer.com							
Client :								
TRAC DEVELOPMENTS INC.								
	HIGH PARK S AND RESIDENCES							
	PARK AVENUE FO, ONTARIO							
Drawing Name : STAT	ISTICS							
Proj no. : 15.281	Date : 2015-10-16							
Drawn by : AA	Scale :							
Checked by : RM								
	Drawing No :							
	RZ 01							

2016-02-08 ISSUED FOR REZONING AND SPA

Issued/Revisior

 2015-10-16
 SUBMITTED FOR PPR

 Date:
 Issued/Revi

his drawing, as an instrument of service, is provided by and is the property of Tu leischer Architects Inc. The contractor must verify and accept responsibility for al imensions and conditions on site and must notify Turner Fleischer Architects Inc. ny variations from the supplied information. This drawing is not to be scaled. The tect is not responsible for the accuracy of survey, structural, mechanical trical, etc., information shown on this drawing. Refer to the appropriate ngs before proceeding with the work. Construction must conform to all appli s and requirements of authorities having jurisdiction. The contractor v

UNIT BRE	EAKDOV	VN	
FLOOD	_		U
FLOOR	1B	1B+D	2B

FLOOD		OUD TOTAL	BARRIER						
FLOOR	1B 1B+D		2B 2B+D		3B	3B+D	SUB-TOTAL	FREE UNITS	
1		14	-	7			21	TBD	
2		14		9		1	24	TBD	
3		7		9		4	20	TBD	
4		6		1		5	12	TBD	
TOTAL	0	41	0	26	0	10	77	0	
TOTAL 41		26		10		11	U		
UNIT MIX	53.2	%	33.8	33.8%		.0%		0.0%	

AMENITY AREAS - REQUIRED & PROVIDED

* AMENITY REQUIREMENTS AS PER CITY OF CITY OF TORONTO ZONING BY-LAW 569-2013

	TYPE	A CONTRACTOR	REQUIRED	PRO	VIDED	
AL		RATIO	m2	ft2	m2	ft2
RESIDENTIAL LDING	INDOOR AMENITY	2.0 m2 / UNIT	154	1,658	303	3,262
4 STOREY R BUIL	OUTDOOR AMENITY	TOTAL AME THE INDOO (NO L	386	4,159		
4 S	TOTAL AMENITY REQ. (IN AND OUTDOOR)	4.0 m2 / UNIT	308	3,315	689	7,421

LOCKERS PROVIDED

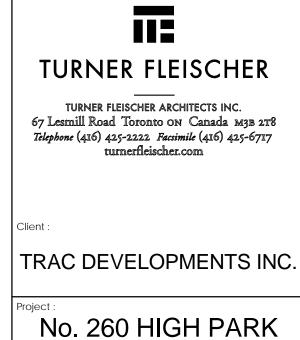
FLOOR	LOCKERS PROVIDED
U/G PARKING LEVEL 1	77
U/G PARKING LEVEL 2	0
TOTAL	77

VEHICULAR PARKING - REQUIRED & PROVIDED

General source of the second states and the				
* DICVCLE DADVINC	DATIOC AC DED	CITV OF	CITV OF	TODONIT
* BICYCLE PARKING	KATIUS AS PER	UNTOF	ULTUF	IUKUNI

G	USE	RATIO	UNITS / GFA (m ²)	SPACES
VEHICULAR RKING REQUIRED		MINIMUM		MINIMUM
۲ğ	VISITOR	0.2 / UNIT	77	15
	1B & 1B+D UNITS	0.9 / UNIT	41	36
ž	2B & 2B+D UNITS	1.0 / UNIT	26	26
, X	3B & 3B+D UNITS	1.2 / UNIT	10	12
PA	TOTAL			89

	LEVEL	US	E	TOTAL
. A		RESIDENT	VISITOR	
AR O CI	SURFACE	0	0	0
EHICULAF PARKING ROVIDED	PARKING LEVEL 1	37	15	52
PARKI	PARKING LEVEL 2	38	0	38
PAR	SUBTOTAL	75	15	90
	TANDEM	17	0	
_	GRAND TOTAL	92	15	107


BICYCLE PARKING - REQUIRED & PROVIDED

* BICYCLE PARKING RATIOS AS PER CITY OF CITY OF TORONTO ZONING BY-LAW 569-2013

	USE	LONG	LONG TERM		SHORT TERM		
чġШ		RATIO	SPACES	RATIO	SPACES		
	RESIDENTIAL	0.9 / UNIT	70	0.1 / UNIT	8	78	
с. Ж	TOTAL	7	0	8	3	78	

	LEVEL	SURFACE		PARKING	TOTAL	
щoЮ		HORIZONTAL	VERTICAL	HORIZONTAL	VERTICAL	
CYCLE RKING DVIDED	RES - SHORT TERM		8			8
	RES - LONG TERM			35	35	70
PR PR	TOTAL	0	8	35	35	70
	TOTAL	8		7	0	78

TO ZONING BY-LAW 569-2013

22016-02-08ISSUED FOR REZONING AND SPA12015-10-16SUBMITTED FOR PPRNo.Date:Issued/Revision:

is drawing, as an instrument of service, is provided by and is the property of Tu eischer Architects Inc. The contractor must verify and accept responsibility for a mensions and conditions on site and must notify Turner Fleischer Architects Inc y variations from the supplied information. This drawing is not to be scaled. Th tect is not responsible for the accuracy of survey, structural, mechanica trical, etc., information shown on this drawing. Refer to the ap

des and requirements of authorities having jurisdiction. The contractor

ings before proceeding with the work. Const

ings not specifically marked 'For Cor

CHURCH LOFTS AND RESIDENCES 260 HIGH PARK AVENUE TORONTO, ONTARIO

STATISTICS

Drawing Name :

oj no. :	15.281	Date : 2015-10-16	
awn by :	AA	Scale :	+
necked by :	RM		2
		Drawing No :	A SP
		RZ 02	1 - 260 High Park asoma rvt

APPENDIX B

Sanitary Flow Calculations Sanitary Sewer Design Sheet Sanitary Tributary Plan Existing Plan & Profiles

EXISTING SANITARY FLOW CALCULATIONS

This program calculates the sanitary discharge from various land use As per the City of Toronto Guidelines

0.487

EXISTING SITE

TOTAL SITE AREA (ha) =

LAND USE	NUMBER OF UNITS	SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, I/sec
RESIDENTIAL Density 1, using 86 person/site area RESIDENTIAL Density 2, using 170 persons/site area RESIDENTIAL Density 3, using 270 persons/site area CHURCH Density 4, using 86person/site area RESIDENTIAL Density 6, using 3.5 persons/unit RESIDENTIAL Density 6, using 3.5 persons/unit	1			0 0 0 4 0				
Total Existing Residential				4	875	0.01	4.45	0.05
CHURCH Density 4, using 86person/site area COMMERCIAL, Using 1.1 persons/100 m2 INSTITUTIONAL, Using 3.3 persons/100 m2 OFFICES, Using, 3.3 persons/100m2 Total Existing ICI		0.425		37 0 0				
				37	8772	0.10	4.34	0.44
Total Infiltration								0.13
TOTAL FLOW								0.61

where :

 $\begin{array}{l} P \text{ is population} \\ q = 250 \text{ L/cap/day} \quad (\text{Residential}) \\ q = 240 \text{ L/cap/day} \quad (\text{ICI}) \end{array}$

i = 0.26 L/sec/ha (infiltration rate) Q = (MqP/86400) + A * I (L/sec) Peaking Factor M = 1 + [14 / (4 + (P/1000,1/2))]

PROPOSED SANITARY FLOW CALCULATIONS

This program calculates the sanitary discharge from various land use

0.487

PROPOSED SITE

As per the City of Toronto Guidelines

LAND USE	NUMBER OF UNITS	SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, I/sec
RESIDENTIAL Density 1, using 86 person/site area RESIDENTIAL Density 2, using 170 persons/site area RESIDENTIAL Density 3, using 270 persons/site area CHURCH Density 4, using 86person/site area RESIDENTIAL Density 6, using 3.5 persons/unit RESIDENTIAL Density 6, using				0 0 0 0				
3.5 persons/unit				0	0	0.00	4.50	0.00
1 BEDROOM Density 2, using 1.4 persons/unit 2 BEDROOM Density 3, using 2.1 persons/unit 3 BEDROOM Density 3, using 3.1 persons/unit	41 26 10			57 55 31				
Total Proposed Residential	77			143	64350	0.74	4.20	3.13
CHURCH Density 4, using 86person/site area COMMERCIAL, Using 1.1 persons/100 m2 INSTITUTIONAL, Using 3.3 persons/100 m2 OFFICES, Using, 3.3 persons/100m2				0 0 0 0				
Total Existing ICI				0	0	0.00	4.50	0.00
Total Infiltration								0.13
TOTAL FLOW								3.25

where :

P is population q = 250 L/cap/day (Existing Residential) q = 450 L/cap/day (Proposed Residential) q = 240 L/cap/day (ICI)

 $i = 0.26 \ L/sec/ha \ (infiltration \ rate) \\ Q = (MqP/86400) + A * I \ (L/sec) \\ Peaking \ Factor \qquad M = 1 + [14 / (4 + (P/1000, 1/2))]$

EXISTING SANITARY FLOW CALCULATIONS

This program calculates the sanitary discharge from various land use As per the City of Toronto Guidelines

5.96

EXISTING SAN TRIBUTARY

TOTAL SITE AREA (ha) =

LAND USE	NUMBER OF UNITS	SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, I/sec
RESIDENTIAL Density 1, using 86 person/site area RESIDENTIAL Density 2, using 170 persons/site area RESIDENTIAL Density 3, using 270 persons/site area CHURCH Density 4, using 86person/site area RESIDENTIAL Density 6, using 3.5 persons/unit RESIDENTIAL Density 6, using 3.5 persons/unit RESIDENTIAL Density 6, using 3.5 persons/unit Total Existing Residential	1 34 35			0 0 0 4 119 123 245	61250	0.71	4.11	2.92
CHURCH Density 4, using 86person/site area COMMERCIAL, Using 1.1 persons/100 m2 INSTITUTIONAL, Using 3.3 persons/100 m2 OFFICES, Using, 3.3 persons/100m2 Total Existing ICI		0.425		37 0 0 37	8772	0.10	4.34	0.44
Total Infiltration								1.55
TOTAL FLOW								4.91

where :

P is population q = 250 L/cap/day (Residential) q = 240 L/cap/day (ICI)

i = 0.26 L/sec/ha (infiltration rate) Q = (MqP/86400) + A * I (L/sec) Peaking Factor M = 1 + [14 / (4 + (P/1000,1/2))]

PROPOSED SANITARY FLOW CALCULATIONS

This program calculates the sanitary discharge from various land use As per the City of Toronto Guidelines

5.96

PROPOSED SAN TRIBUTARY

As per the City of Toronto Guideli

TOTAL SITE AREA (ha) =	
------------------------	--

LAND USE		SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, I/sec
RESIDENTIAL Density 1, using 86 person/site area RESIDENTIAL Density 2, using 170 persons/site area RESIDENTIAL Density 3, using				0				
270 persons/site area CHURCH Density 4, using 86person/site area				0				
RESIDENTIAL Density 6, using 3.5 persons/unit	34			119				
RESIDENTIAL Density 6, using 3.5 persons/unit	35			123				
Total Existing Residential				242	60375	0.70	4.12	2.88
1 BEDROOM Density 2, using 1.4 persons/unit 2 BEDROOM Density 3, using 2.1	41			57				
2 BEDROOM Density 3, using 2.1 persons/unit 3 BEDROOM Density 3, using 3.1 persons/unit	26 10			55				
Total Proposed Residential				143	64350	0.74	4.20	3.13
CHURCH Density 4, using 86person/site area COMMERCIAL, Using 1.1				0				
persons/100 m2 INSTITUTIONAL, Using 3.3 persons/100 m2				0				
OFFICES, Using, 3.3 persons/100m2				0				
Total Existing ICI				0	0	0.00	4.50	0.00
Total Infiltration								1.55
TOTAL FLOW								7.55

where :

P is population q = 250 L/cap/day (Existing Residential) q = 450 L/cap/day (Proposed Residential) q = 240 L/cap/day (ICI)

 $i = 0.26 \ L/sec/ha \ (infiltration \ rate) \\ Q = (MqP/86400) + A * I \ (L/sec) \\ Peaking \ Factor \qquad M = 1 + [14 / (4 + (P/1000, 1/2))]$

					EXIS		ANITAR velopment			SIGN						
	MAINTE	ENANCE					М			AREA					Q	V
STREET / AREA	HC	DLE	DWELL	DENSITY	POP.	POP.	PEAKING	Q _P	AREA	(ACC)	Qi	Q _{tot}	D	S	FULL	FULL
	FROM	то	UNITS	P.P.U.	(P)	(ACC)	FACTOR	(L/S)	(ha)	(ha)	(L/S)	(L/S)	(mm)	(%)	(L/S)	(m/s)
HIGH PARK	100A	101A			RI	EFER TO D	ESIGN SHEE	T			0.00	4.91	825	0.40	907.85	1.70
HIGH PARK	101A	102A			RI	EFER TO D	ESIGN SHE	T			0.00	4.91	825	0.40	907.85	1.70
HIGH PARK	102A	TRUNK		REFER TO DESIGN SHEET					0.00	4.91	825	0.40	907.85	1.70		
DATE: February 10, 2016			CALCULA	TED BY: Kev	rin Osinga,	C.E.T.						CHECKED	BY: John K	rpan, P.Eng	3	

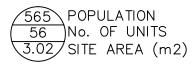
-

n > 0.013

г

					PROP		SANITA velopment			ESIGN						
	MAINT	ENANCE					М			AREA					Q	V
STREET / AREA	HC	DLE	DWELL	DENSITY	POP.	POP.	PEAKING	Q _P	AREA	(ACC)	Qi	Q _{tot}	D	S	FULL	FULL
	FROM	ТО	UNITS	P.P.U.	(P)	(ACC)	FACTOR	(L/S)	(ha)	(ha)	(L/S)	(L/S)	(mm)	(%)	(L/S)	(m/s)
HIGH PARK	100A	101A			PI		ESIGN SHEE	т			0.00	7.55	825	0.40	907.85	1.70
HIGH PARK	100A	101A 102A				-	ESIGN SHEE				0.00	7.55	825	0.40	907.85	1.70
HIGH PARK	101A 102A	TRUNK		REFER TO DESIGN SHEET					0.00	7.55	825	0.40	907.85	1.70		
DATE: February 10, 2016			CALCULA	TED BY: Kev	in Osinga,	C.E.T.				•		CHECKED	BY: John K	(rpan, P.Eng	l	

-

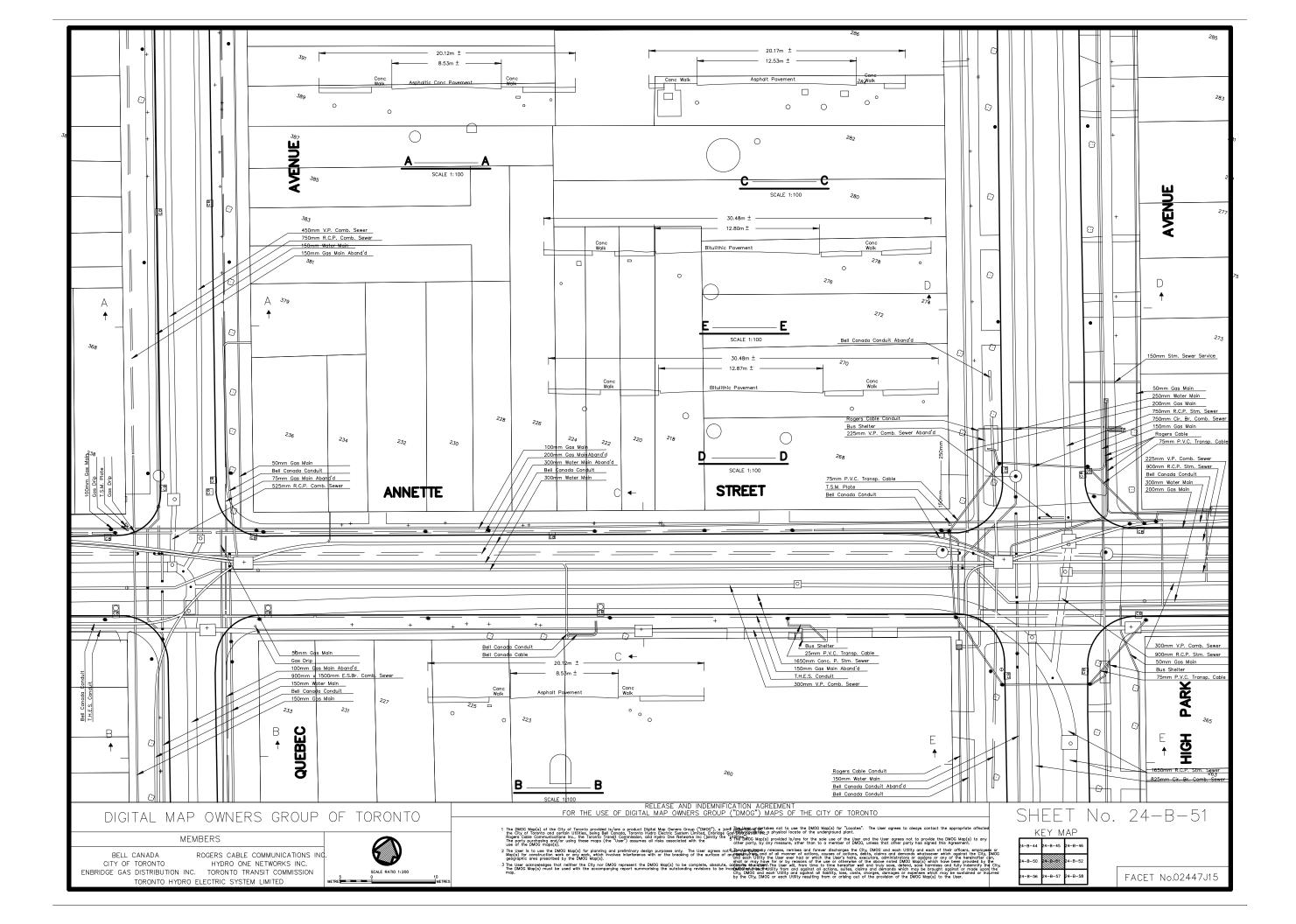

n > 0.013

г

	PROJECT NO : 15263	
TRIBUTARY PLAN	260 HIGH PARK	O ODAN-DETECH
N.T.S.	DATE: NOVEMBER 2015	The Odan/Detech Group Inc. P: (905) 632-3811 F: (905) 632-3363 5230 SOUTH SERVICE ROAD, BURLINGTON, ONTARIO, L7L 5K2

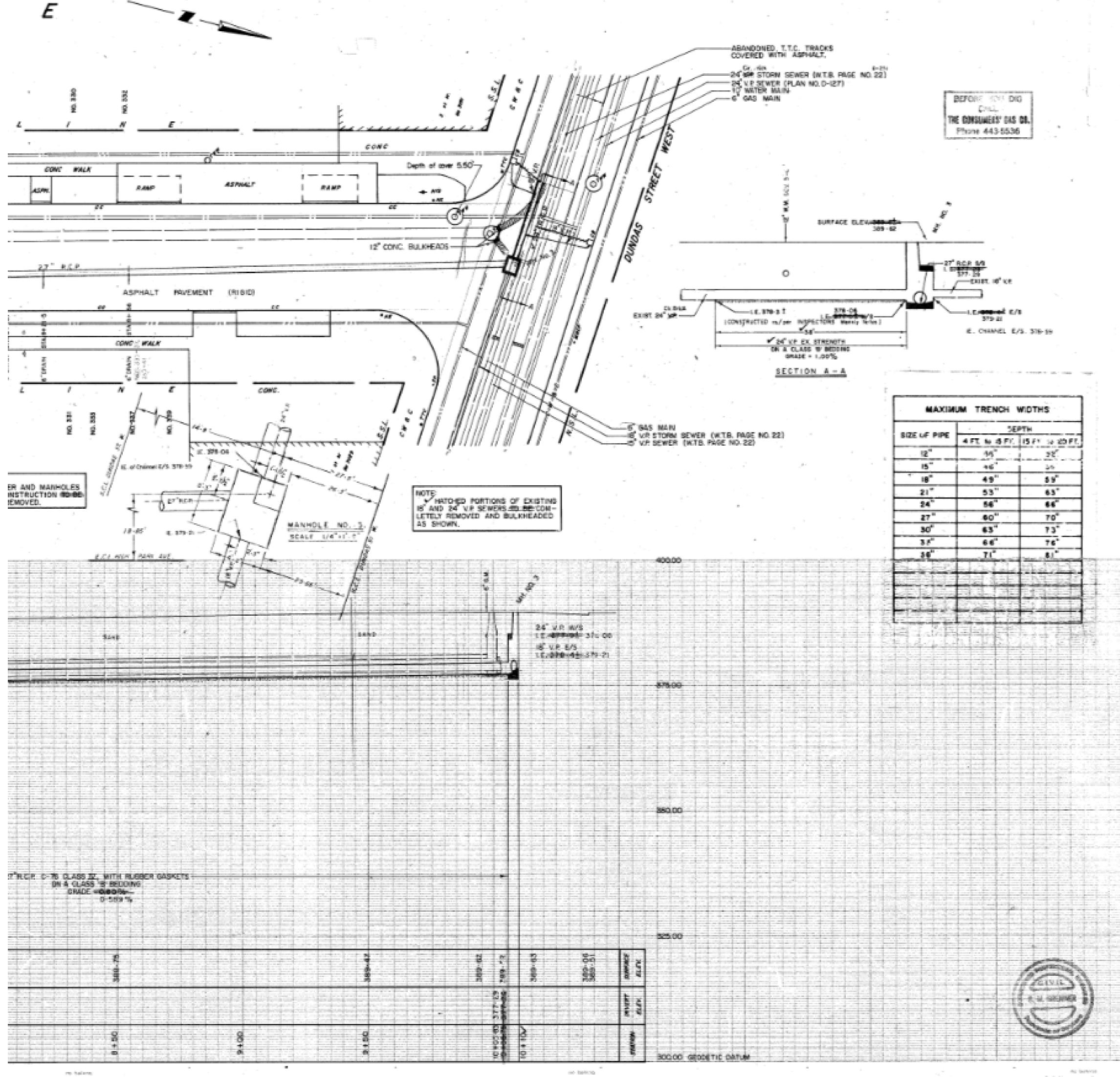
RESIDENTIAL SINGLE FAMILY (3.5 PERSONS/UNIT)

SCHOOL/CHURCH (86 PERSONS/ha)



 $\begin{array}{c}
 4 \\
 \hline
 0.38
\end{array}$ POPULATION AREA (ha)

RESIDENTIAL APARTMENTS (BASED ON PROPOSED UNITS)



POPULATION 0.38 AREA (ha)

WORK COMMENCED MAY 3, 1974.	
WORK COMPLETED ALX 24 , 1974	
FINAL MEASUREMENT BOOK LLINNA 4945 PAGE DATE 447 R. ISN.	
INSPECTOR N. PARSON	
LAYOUT W. WALL	
SUPERVISING ENGINEER K. HALLAT	

•

the fill of the second second second second second second with the second second

467-7521

appent and second day.

* *

GEDDETIC BENCH MARK NO. 426, ELEV. 391-627 • • • • 427 • 387-043 v SEE LOOSE LEAF NOTES NOS. 3507 0+8 3529

	DEPA	CITY OF T RTMENT OF	FORONTO PUBLIC W	ORKS	
	R	DAD STO	RM SEW	/ER	
	HIGH	PAR	K AV	ENUE	
FROM	ANNETTE	STREET	TO DUND	AS STREET	WEST
DRAWING NO.	H-235		SCALES HOP	Z 1= 20-0, VE	0 01 = 1
SENIOR DESIGN EN	- Walter	منسنا	DESIGN BY	ANING and D	HANMONS
DIRECTOR	Sector	inter	CONTRACT NO	58560	
COMMERCINES.	ZMO		GATE	VENBER 1973	

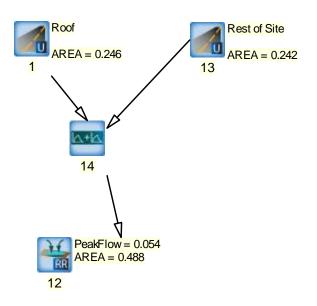
3-1354-73:006

DEC. 28 1978

APPENDIX C

FUS Calculation Sheet Fire Hydrant Pressure/Flow Test Results

WATER SUPPLY FOR PUBLIC FIRE PROTECT GUIDE FOR DETERMINATION OF REQUIRED			ITERS SUR	RVEY						
F = 220 × C × V A										
$F = 220 \times C \times \sqrt{A}$ Where:										
<i>F</i> = required fire flow in liters per minute										
C= Coefficient related to the type of const A = the total floor area in square meters	ruction									
(excluding basements) in the building										
considered										
LOCATION:	High Park	& Annette				PROJECT:	260 High Par	k		
OBC OCCUPANCY:		Reside	ential			PROJECT No:	15263			
BUILDING FOOT PRINT (m2):	3080								Contents	Charge
# OF STOREYS	4								Non-Combustible	-25%
	L								limited Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Ordii	nary		7				Free Burning	15%
									Rapid Burning	25%
AUTOMATED SPRINKLER PROTECTION	r	Credit	Total							
NFPA 13 sprinkler standard Standard Water Supply	yes yes	30% 10%	50%							
Fully Supervised System	yes	10%	50/0							
		50%								
CONTENTS FACTOR:		Limited	-Combust	tible		CHARGE:	-15%			
	L								Seperation	Charge
EXPOSURE 1 (south) Residential	Dist	ance to Ex	-			6	0%		0-3 m	25% 20%
EXPOSURE 2 (east)	Dist	ance to Ex	-	th - Heigh uilding (m		>45			3.1 -10 m 10.1 - 20 m	20% 15%
Residential			Lengt	th - Heigh	t		0%		20.1 - 30 m	10%
EXPOSURE 3 (west) Residential	Dist	tance to Ex	-	uilding (m th - Heigh		8	0%		30.1 - 45 > 45 m	5% 0%
EXPOSURE 4 (north)	Dist	tance to Ex	-	-		25	00/		245111	076
Residential			Lengt	th - Heigh	t		0%			
						Total:	0%	no more than 75%		
ARE BUILDINGS CONTIGUOUS:										
FIRE RESISTANT BUILDING	Are vertical	openings and	exterior vert	tical commu	nications _I	protected with	a minimum on	e (1) hr rating		
CALCULATIONS	<i>C</i> =	1.2		Ordina	ry				·	
	A =	9682	m2						STOREY AREAS m2	
	F =	25977	L/min						2676	
Round to Nearest 1000 L/min	F =	26000	L/min	must b	e > 2000) L/min			2548 2396	
CORRECTION FACTORS:									2062	
OCCUPANCY		-3900	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY REDUCTION FOR SPRINKLEF		22100 -11050	L/min							
EXPOSURE CHARGE		0	L/min L/min							
	F =	11050	L/min							
REQUIRED FIRE FLOW Round to Nearest 1000 L/min	F =	11050	L/min	2906	lisam					
Kound to Nearest 1000 L/MIN		183	L/min L/sec	2900	usgm					
	F =	102	LISEC							



WATER SUPPLY FOR PUBLIC FIRE PROTECT GUIDE FOR DETERMINATION OF REQUIRED			ITERS SUF	RVEY						
E 220 - C										
$F = 220 \times C \times \sqrt{A}$ Where:										
<i>F</i> = required fire flow in liters per minute										
C= Coefficient related to the type of const A = the total floor area in square meters	ruction									
(excluding basements) in the building										
considered										
LOCATION:	High Park	& Annette	9			PROJECT:	260 High Par	k		
OBC OCCUPANCY:		Resid	ential			PROJECT No:	15263			
BUILDING FOOT PRINT (m2):	3080								Contents	Charge
# OF STOREYS	4								Non-Combustible	-25%
	L								limited Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Fire Re	sistive						Free Burning	15%
						•			Rapid Burning	25%
AUTOMATED SPRINKLER PROTECTION	r	Credit	Total							
NFPA 13 sprinkler standard Standard Water Supply	yes yes	30% 10%	50%							
Fully Supervised System	yes	10%	5070							
		50%								
CONTENTS FACTOR:		Limited	-Combust	tible		CHARGE:	-15%			
	L					, 			Seperation	Charge
EXPOSURE 1 (south) Residential	Dist	tance to Ex	-			6	0%		0-3 m	25% 20%
EXPOSURE 2 (east)	Dist	tance to Ex	-	th - Heigh uilding (m		>45			3.1 -10 m 10.1 - 20 m	20% 15%
Residential			Lengt	th - Heigh	it		0%		20.1 - 30 m	10%
EXPOSURE 3 (west) Residential	Dist	tance to Ex	-	uilding (m th - Heigh		8	0%		30.1 - 45 > 45 m	5% 0%
EXPOSURE 4 (north)	Dist	tance to Ex	-	-		25	00/		245111	076
Residential			Lengt	th - Heigh	it		0%			
						Total:	0%	no more than 75%		
		_								
ARE BUILDINGS CONTIGUOUS:										
FIRE RESISTANT BUILDING	Are vertical	openings and	exterior ver	tical commu	inications	protected with	a minimum on	e (1) hr rating		
CALCULATIONS	<i>C</i> =	0.6		Fire Re	sistive				·	
	A =	9682	m2						STOREY AREAS m2	
	F =	12988	L/min						2676	
Round to Nearest 1000 L/min	F =	13000	L/min	must b	e > 2000) L/min			2548 2396	
CORRECTION FACTORS:									2396 2062	
OCCUPANCY		-1950	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY		11050	L/min							
REDUCTION FOR SPRINKLEF EXPOSURE CHARGE		-5525 0	L/min L/min							
REQUIRED FIRE FLOW Round to Nearest 1000 L/min	F=	5525	L/min	1505	116.000					
Kound to wearest 1000 L/Min	F =	6000 100	L/min	1585	usgm					
	F =	100	L/sec							

APPENDIX D

Visual Otthymo Model Visual Otthymo Input & Output Water Balance Calculations

VISUAL OTTHYMO MODEL

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 80.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Developed and Distributed by Clarifica Inc. Copyright 1996, 2007 Clarifica Inc. All rights reserved.	STANDHYD (0001) Area (ha)= .25 [ID=1 DIP= 3.0 min Total Imp(%)= 99.00 Dir. Conn.(%)= 99.00
***** DETAILED OUTPUT***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 2.3.3\voin.dat Output filename: P:\2015\15263\SWM\FSR\SET B\OTTHYMO\Post Development.out	Dep. Storage (mm) = 1.00 1.00 Average Slope (%) = 1.00 2.00 Length (m) = 40.50 40.00 Mannings n = .013 .250
DATE: 2016-01-18 TIME: 3:19:41 PM	Max.Eff.Inten.(mm/hr) = 88.27 136.85 over (min) 6.00 3.00 Storage Coeff. (min) = 1.56 (ii) 2.74 (ii) Unit Hyd. Tpeak (min) = 6.00 3.00 Unit Hyd. peak (cms) = .34 .38 *TOTALS*
USER:	PEAK FLOW (cms)= .06 .00 .058 (iii) TIME TO PEAK (hrs)= 1.30 1.30 1.30 RUNOFF VOLUME (mm)= 28.59 26.24 28.57 TOTAL RAINFALL (mm)= 29.59 29.59 29.59 RUNOFF COEFFICIENT = .97 .89 .97
	***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
** SIMULATION NUMBER: 1 **	 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 99.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CHICAGO STORM IDF curve parameters: A= 531.900 Ptotal= 29.59 mm B= .000	
C= .780 used in: INTENSITY = A / (t + B)^C	ADD HYD (0014)
Duration of storm = 4.00 hrs Storm time step = 10.00 min	1 + 2 = 3 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm)
Time to peak ratio = .33	ID1= 1 (0013): .24 .036 1.30 20.32 + ID2= 2 (0001): .25 .058 1.30 28.57
TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr .17 1.84 1.17 10.49 2.17 3.94 3.17 2.16	
.33 2.08 1.33 88.27 2.33 3.43 3.33 2.02 .50 2.42 1.50 13.15 2.50 3.05 3.50 1.90	
.67 2.90 1.67 7.84 2.67 2.75 3.67 1.79 .83 3.68 1.83 5.80 2.83 2.52 3.83 1.70 1.00 5.23 2.00 4.67 3.00 2.32 4.00 1.62	
	RESERVOIR (0012) IN= 2> OUT= 1
	DT= 3.0 min OUTFLOW STORAGE OUTFLOW STORAGE (cms) (ha.m.) (cms) (ha.m.) .0000 .0000 .0460 .0135
CALIB STANDHYD (0013) Area (ha)= .24	.0250 .0045 .0540 .0180 .0370 .0090 .0000 .0000
ID= 1 DT= 3.0 min Total Imp(%)= 62.00 Dir. Conn.(%)= 62.00 IMPERVIOUS PERVIOUS (i)	AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm)
Surface Area (ha)= 15 09 Dep. Storage (mm)= 1.00 5.00 Average Slope (%)= 1.00 2.00 Length (m)= 40.20 40.00	(Ha) (Chis) (H12) (MH) INFLOW: ID= 2 (0014) .488 .094 1.30 24.48 OUTFLOW: ID= 1 (0012) .488 .028 1.45 24.39 PEAK FLOW REDUCTION [Qout/Qin] (%)= 29.23
Mannings n = .013 .250 NOTE: RAINFALL WAS TRANSFORMED TO 3.0 MIN. TIME STEP.	TIME SHIFT OF PEAK FLOW (min)= 9.00 MAXIMUM STORAGE USED (ha.m.)= .0055
TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	******************
.050 1.84 1.050 10.49 2.050 3.94 3.05 2.16 .100 1.84 1.100 10.49 2.100 3.94 3.10 2.16 .150 1.84 1.110 10.49 2.150 3.94 3.15 2.16 .150 1.84 1.150 10.49 2.150 3.94 3.15 2.16 .200 2.00 1.200 62.35 2.200 3.60 3.25 2.02 .200 2.08 1.250 88.27 2.200 3.43 3.30 2.02 .300 2.08 1.300 88.27 2.300 3.43 3.30 2.02	CHICAGO STORM IDF curve parameters: A=1579.400 Ptotal= 78.75 mm B= .000 C= 800
.350 2.20 1.350 63.23 2.350 3.30 3.35 1.98	
.400 2.42 1.400 13.15 2.400 3.05 3.40 1.90 .450 2.42 1.450 13.15 2.450 3.05 3.45 1.90 .500 2.42 1.500 13.15 2.500 3.05 3.50 1.90	Duration of storm = 4.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr .17 4.47 1.17 26.65 2.17 9.75 3.17 5.26 .33 5.08 1.33 250.32 2.33 8.46 3.33 4.91 .50 5.91 1.50 35.57 2.67 6.75 3.67 4.34 .67 7.12 1.67 19.76 2.67 6.75 3.67 4.34 .83 9.10 1.83 14.49 2.83 6.16 3.83 4.11 1.00 13.03 2.00 11.60 3.00 5.67 4.00 3.91
.550 2.90 1.550 7.84 2.550 2.75 3.55 1.79 .600 2.90 1.600 7.84 2.600 2.75 3.60 1.79	TIME RAIN TIME RAIN TIME RAIN TIME RAIN
.000 2.50 1.000 7.64 2.650 2.75 1.79 .700 3.42 1.700 6.48 2.700 2.60 3.70 1.73 .750 3.68 1.750 5.80 2.750 2.52 3.75 1.70	.17 4.47 1.17 26.65 2.17 9.75 3.17 5.26 .33 5.08 1.33 250.32 2.33 8.46 3.33 4.91
.800 3.68 1.800 5.80 2.800 2.52 3.80 1.70 .850 4.20 1.850 5.42 2.850 2.45 3.85 1.67	.50 5.91 1.50 33.57 2.50 7.50 3.50 4.61 .67 7.12 1.67 19.76 2.67 6.75 3.57 4.34
.900 5.23 1.900 4.67 2.900 2.32 3.90 1.62 .950 5.23 1.950 4.67 2.950 2.32 3.95 1.62 1.000 5.23 2.000 4.67 3.000 2.32 4.00 1.62	1.00 13.03 2.00 11.60 3.00 5.67 4.00 3.91
Unit Hyd. Tpeak (min)= 6.00 9.00	
опіс нуд. реак (cms)= .34 .14 *TOTALS* РЕАК FLOW (cms)= .04 .00 .036 (iii)	STANDHYD (0013) Area (ha)= .24 ID= 1 DT= 3.0 min Total Imp(%)= 62.00 Dir. Conn.(%)= 62.00
TIME TO PEAK (hrs)= 1.30 1.40 1.30 RUNOFF VOLUME (mm)= 28.59 6.87 20.32 RUNDFF VOLUME (mm)= 20.59 0.050	IMPERVIOUS PERVIOUS (i) Surface Area (ha)= .15 .09 Dep. Storage (mm)= 1.00 5.00 Average Slope (%)= 1.00 2.00
Unit Hyd. peak (cms)= .34 .14 PEAK FLOW (cms)= .04 .00 .036 (iii) TIME TO PEAK (hrs)= 1.30 1.40 1.30 RUNOFF VOLUME (mm)= 28.59 6.87 20.32 TOTAL RAINFALL (mm)= 29.59 29.59 29.59 RUNOFF COEFFICIENT = .97 .23 .69	Average Slope (%)= 1.00 2.00

260 HIGH PARK FUNCTIONAL SERVICING REPORT

Length Mannings			40.20		40.00				Mannings n		=	.013	.25	0	
Mannii 1193		-	.015		.200				Max.Eff.Int	en.(mm/h:	c) = 25	50.32	991.0	6	
NOTE :	BAINE	ALL WAS T	FRANSFORM	ED TO	3.0 MTN.	TIME ST	EP.				n) –		3.0		
									Storage Coe	ff (mi)	- (-	1 03 (11)	1 8	1 (11)	
									Unit Hyd. T Unit Hyd. p	peak (min	n) =	6.00	3.0	0	
			TR/	ANSFORME	D HYETOG	RAPH	_		Unit Hvd. p	eak (cm	s) =	.36	. 4	6	
	TIME	RAIN	TIME		TIME		TIME	RAIN							*TOTALS*
	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	PEAK FLOW	(cm:	s) =	.17	.0	0	.169 (iii)
	.050	4.47	1.050	26.65	2.050	9.75	3.05	5.26	TIME TO PEA	K (hrs	s) =	1.30	1.3	0	1.30
	.100	4.47	1.100	26.65	2.100	9.75	3.10	5.26	RUNOFF VOLU	ME (mr	n) = .	77.75	75.2	7	77.72
	.150	4.47	1.150	26.65	2.150	9.75	3.15	5.26	TOTAL RAINF	ALL (mr	n) = .	78.75	78.7	5	78.75
	.200	4.87	1.200	175.76	2.200	8.89	3.20	5.02	PEAK FLOW TIME TO PEA RUNOFF VOLU TOTAL RAINF RUNOFF COEF	FICIENT	=	.99	.9	6	.99
	.250	5.08	1.250	250.32	2.250	8.46	3.25	4.91							
	.300	5.08	1.300	250.32	2.300	8.46	3.30	4.91	***** WARNING: S	TORAGE CO	DEFF. IS S	MALLER TH	HAN TIME	STEP!	
	.350	5.35	1.350	178.07	2.350	8.14	3.35	4.81							
	.400		1.400				3.40	4.61	(i) CN PR						
	.450		1.450			7.50	3.45	4.61	CN*	= 99.0	Ia = 1	Dep. Stora	age (Ab	ove)	
	.500		1.500				3.50	4.61	(ii) TIME				R OR EQU	AL	
	.550		1.550		2.550		3.55	4.34	THAN						
	.600		1.600				3.60	4.34	(iii) PEAK	FLOW DOES	S NOT INC	LUDE BASEI	FLOW IF .	ANY.	
	.650		1.650		2.650		3.65	4.34							
	.700		1.700		2.700		3.70								
	.750		1.750		2.750		3.75	4.11							
	.800		1.800		2.800		3.80	4.11							
	.850		1.850		2.850		3.85								
			1.900				3.90	3.91	ADD HYD (001	4)					
			1.950		2.950		3.95	3.91	1 + 2 = 3	1	AREA	QPEAK			
	1.000	13.03	2.000	11.60	3.000	5.67	4.00	3.91			(ha)	(cms)	(hrs) (mm	.)
N		()	050 00		0.4. 20				IDI= 1	(0013):	.24	.123	1.30	63.26	
Max.Eff.I		m/nr)= (min)			6.00				+ ID2= 2		.25				
0.5	over	(min)	6.00	(22)	6.00 E 04 (-					(0014):			1.30		
Storage C Unit Hyd. Unit Hyd.	JUEII.	(min) =	1.02	(11)	J.04 (1	-)			10 = 3	(0014).	.49	.292	1.50	70.55	
Unit Hyd.	Tpeak	$(m_{\pm}n_{\pm}) =$	0.00		0.00				NOTE: PEAK		-		DI ONG ID	3 3 11/	
UNIT Hyd. PEAK FLOW TIME TO PI RUNOFF VO TOTAL RAII RUNOFF CO	peak	(CIUS) =	. 30		.21	****			NOTE: PEAK	FLOWS DO	J NOT INC	JUDE BASEI	ELOWS IF	ANI.	
DEAK FLOW	a	(ama) =	1.0		0.2	10.	122 /33								
TIME TO D	אעשכ	(cms) =	1 30		1 35		.123 (11 1 30	±)							
DINOFE VO	TIME	(IILS) =	77 75		39.63	6	3 26								
TOTAL DAT	INFALL	(mm) =	78 75		78 75	71	8 75		RESERVOIR (001	2)					
BUNGEE COL	DEFETCIE	(nun) =	99		50		80		IN= 2> OUT=						
100011 00.					.00				DT= 3.0 min		OUTFLOW	STORAGE	E I O	UTELOW	STORAGE
*** WARNING:	STORAGE	E COEFF	TS SMALL	ER THAN	TIME STE	51					(cms)				
minutino.	01010101		10 01111111	210 211110	11111 011						.0000				.0135
(i) CN (PROCEDU	RE SELECI	TED FOR PI	ERVIOUS	LOSSES:						.0250			.0540	
			a = Dep. S									.0090	o i	.0000	.0000
			JLD BE SMA												
			DEFFICIEN		~						1	AREA	QPEAK	TPEA	K R.V.
(iii) PEAL					IF ANY.							(ha)	(cms)	(hrs	K R.V.) (mm)
									INFLOW : ID	= 2 (0014	4)	.488	. 292	1.3	0 70.55
									OUTFLOW: ID	= 1 (0012	2)	488	.054	1.4	5 70.46
										PEAK	FLOW H	REDUCTION	[Qout/Q	in](%)= 1	8.47
CALIB											SHIFT OF 1				
STANDHYD (0										MAXIM	JM STORAG	GE USED	(ha.m.)=	.0180
		Total I	.mp(%)= 9	99.00	Dir. Con	n.(%)=	99.00								
D= 1 DT= 3.0			IMPERVIOU		RVIOUS (i)									
					0.0										
	irea	(ha) =	.24		.00										
	\rea age	(ha) = (mm) =	.24 1.00		1.00				FINISH						
	Area Sage Nope	(ha) = (mm) = (%) =	.24 1.00 1.00		1.00				FINISH						

WATER BALANCE CALCULATION SHEET

SITE AREA

4870 m

0.487 ha

WATER BALANCE

SURFACE TYPE	RECHARGE METHOD	SURFACE CAPTURE (mm)	AREA (m²)	% OF SITE AREA	ANNUAL VOLUME CAPTURE (%)	ANNUAL VOLUME CAPTURE (m ³)
Landscaped Areas	Infiltration	5	1250	25.7	48.0	504.0
Hard Surfaces	Infiltration	1	920	18.9	9.0	69.6
Roof Top (Green)	Infiltration	5	240	4.9	48.0	96.8
Roof Top	Re-Use	10	2460	50.5	69.0	1425.8
TOTAL			4870	100.0		2096.1

TOTAL ANNUAL AVERAGE RAINFALL

840 mm

CAPTURED VOLUME TARGET (50% of Total Average Annual Rainfall Volume) (Total Area x Total Annual Average Rainfall x 50%)	2045.4 m ³
ANNUAL CAPTURED VOLUME (%)	51%
STORAGE TANK SIZE (m3)	24.6 m ³
- Minus Pipe Storage	0.6 m ³
ACTUAL TANK SIZE (m3)	24.0 m ³